make_union
sklearn.pipeline.make_union(*transformers, **kwargs)
Construct a FeatureUnion from the given transformers.
This is a shorthand for the FeatureUnion constructor; it does not require, and does not permit, naming the transformers. Instead, they will be given names automatically based on their types. It also does not allow weighting.
Parameters:
*transformers: list of estimatorsn_jobs: int, optionalNumber of jobs to run in parallel (default 1).
Returns:
f: FeatureUnion
Examples
>>> from sklearn.decomposition import PCA, TruncatedSVD
>>> from sklearn.pipeline import make_union
>>> make_union(PCA(), TruncatedSVD())
FeatureUnion(n_jobs=1,
transformer_list=[('pca',
PCA(copy=True, iterated_power='auto',
n_components=None, random_state=None,
svd_solver='auto', tol=0.0, whiten=False)),
('truncatedsvd',
TruncatedSVD(algorithm='randomized',
n_components=2, n_iter=5,
random_state=None, tol=0.0))],
transformer_weights=None)
Last updated