ExtraTree
from sklearn import tree
X = [[0, 0], [1, 1]]
Y = [0, 1]
clf = tree.ExtraTreeClassifier()
clf = clf.fit(X, Y)
>>> clf.predict([[2., 2.]])
array([1])class sklearn.tree.ExtraTreeClassifier(
criterion=’gini’,
splitter=’random’,
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=’auto’,
random_state=None,
max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None,
class_weight=None
)
#见DecisionTree的属性
方法
Last updated